Optimization Odyssey:

Navigating the Maze of Neural Network Tuning

Revolutionizing Machine Learning: The Power of Artificial Neural Networks

- Pattern and Speech recognition.
- □ Natural Language Processing.
- Handling High-Dimensional data and learning Hierarchical representations.
- Development of Autonomous vehicles, Robotics.
- Democratization of Al.

The Optimization Phenomenon

- Problem Formulation
- Iterative process
- Solution evaluation
- Solution refinement
- Solution implementation

Process optimization steps

Convergence of Optimization and Artificial Biology: Exploring the Synergy of Efficiency and Adaptation

Where the human concept of trial and error and the artificial art of continuous learning collide

Continuous Learning

Trial, failure, and the will to try again

Optimization Frontier: Unlocking Algorithmic Brilliance

- Gradient Descent (GD)
- Stochastic Gradient Descent (SGD)
- Mini-Batch Gradient Descent
- Momentum
- Nesterov Accelerated Gradient (NAG)
- □ Levenberg-Marquardt
- Quickprop
- Rprop (Resilient Backpropagation)

- Adagrad (Adaptive Gradient)
- RMSProp (Root Mean Square Propagation)
- Adam (Adaptive Moment Estimation)
- AdaDelta (Adaptive Learning Rate)
- Adamax
- Limited-memory BFGS (L-BFGS)

- Nadam (Nesterovaccelerated Adaptive Moment Estimation)
- AMSGrad (Adaptive Moment Estimation with Stochastic Gradient Descent)
- Adadelta
- Natural Evolution
- Strategies (NES)
- Evolution Strategies (ES)
- Conjugate Gradient (CG)

In Pursuit of Perfection: The Big 5

7

A Cut Above the Rest: Introducing the 5 Superior Optimizer Algorithms for Our Project

- **GID** SGD (Stochastic Gradient Descent)
- Adam (Adaptive Moment Estimation)
- Adagrad (Adaptive Gradient Algorithm)
- RMSProp (Root Mean Square Propagation)
- Nadam (Nesterov-accelerated Adaptive Moment Estimation)

Breast Cancer Classification with different Optimization Algorithms

Which one of the big 5 is more optimal in terms of Accuracy and Loss Function?

Let us find out..

Importing Libraries

In []: import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import sklearn.datasets from sklearn.model_selection import train_test_split

Data Collection and Processing

- In []: # loading the data from sk.learn
 breast_cancer_dataset = sklearn.datasets.load_breast_cancer()
- In []: # Loading the data to a Panda Dataframe
 df = pd.DataFrame(breast_cancer_dataset.data, columns = breast_cancer_dataset.feature_names)

Standardize the Data (Normalising for better accuracy)

- In []: from sklearn.preprocessing import StandardScaler
- In []: scaler = StandardScaler()

```
X_train_std = scaler.fit_transform(X_train)
```

```
X_test_std = scaler.transform(X_test)
```

In []: print(X_train_std)

Building The Neural Network

In []: # Importing tenserflow and Keras import tensorflow as tf tf.random.set_seed(3) #for constant accuracy score in more than one session from tensorflow import keras

Adam Model

- In []: # setting up the Layers of NN
 - # flatten is taking the 30 feautures and putting it into 1 dimensional array
 - # first dense is hidden, second is output Layer

adam= keras.Sequential([

keras.layers.Flatten(input_shape=(30,)), keras.layers.Dense(20, activation='relu'), keras.layers.Dense(2, activation='sigmoid')

])

In []: # Compiling NN

In []: # training the NN

history_adam = adam.fit(X_train_std, Y_train, validation_split=0.1, epochs=10)

Visualing accuracy and loss

```
plt.title('model_accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
```

plt.legend(['Training Data', 'Validation Data'], loc = 'lower right')

In []: plt.plot(history_adam.history['loss'])
 plt.plot(history_adam.history['val_loss'])

plt.title('model_loss')
plt.ylabel('loss')
plt.xlabel('epoch')

plt.legend(['Training Data', 'Validation Data'], loc = 'upper right')

Accuracy of the model on the test data

In []: loss, accuracy = adam.evaluate(X_test_std, Y_test)
print(accuracy)

In []: history_sgd = sgd.fit(X_train_std, Y_train, validation_split=0.1, epochs=10)

```
In [ ]: loss, accuracy = sgd.evaluate(X_test_std, Y_test)
print(accuracy)
```

RMSProp

In []: history_rms = rms.fit(X_train_std, Y_train, validation_split=0.1, epochs=10)

In []: loss, accuracy = rms.evaluate(X_test_std, Y_test)
print(accuracy)

Adagrad

In []: history_adagra = adagra.fit(X_train_std, Y_train, validation_split=0.1, epochs=10)

```
In [ ]: loss, accuracy = adagra.evaluate(X_test_std, Y_test)
print(accuracy)
```

Nadam

In []: history_nadam = nadam.fit(X_train_std, Y_train, validation_split=0.1, epochs=10)

```
In [ ]: loss, accuracy = nadam.evaluate(X_test_std, Y_test)
print(accuracy)
```

Findings

B. Model Evaluation

The model is evaluated using accuracy and loss function, briefly structured below.

Algorithm	Accuracy	Loss Function
SGD	95.61%	0.1669
Adam	97.37%	0.1273
Adagrad	70.18%	0.6419
RMSProp	95.61%	0.1276
Nadam	95.61%	0.1389
T-11. 1. T1	6.4 1 14	

Table 1: Evaluation of the algorithms

13

Behavior in Loss Function

Behavior in Accuracy

Adam takes the apple fruit

With the highest Accuracy of rate 97.37% and the lowest Loss Function of 0.1273, the Adam optimizer is clearly the most powerful optimizer in this study.

15

Slapping the rest out of The Office

Get outta here, Chris Rock, sorry, you pretender algorithms..

End of the voyage through ANN with optimizers

Riashad Hassan ID: 20320001 Department of CSE Fareast International University

16

Shahidul Islam ID: 0722210005101007 Department of CSE Fareast International University

Shabab Affanul Hoque ID: 0722210005101003 Department of CSE Fareast International University